Convergence analysis of multigrid methods with collective point smoothers for optimal control problems

نویسندگان

  • Stefan Takacs
  • Walter Zulehner
چکیده

In this paper we consider multigrid methods for solving saddle point problems. The choice of an appropriate smoothing strategy is a key issue in this case. Here we focus on the widely used class of collective point smoothers. These methods are constructed by a point-wise grouping of the unknowns leading to, e.g., collective Richardson, Jacobi or Gauss-Seidel relaxation methods. Their smoothing properties are well-understood for scalar problems in the symmetric and positive definite case. In this work the analysis of these methods is extended to a special class of saddle point problems, namely to the optimality system of optimal control problems. For elliptic distributed control problems we show that the convergence rates of multigrid methods with collective point smoothers are bounded independent of the grid size and the regularization (or cost) parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patch Smoothers for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems

We consider a multigrid method for solving the discretized optimality system of a PDE-constrained optimization problem. In particular, we discuss the construction of an additive Schwarz-type smoother for a class of elliptic optimal control problems. A rigorous multigrid convergence analysis yields level-independent convergence rates. Numerical experiments indicate that the convergence rates are...

متن کامل

Multigrid methods for saddle point problems: Stokes and Lamé systems

We develop new multigrid methods for a class of saddle point problems that include the Stokes system in fluid flow and the Lamé system in linear elasticity as special cases. The new smoothers in the multigrid methods involve optimal preconditioners for the discrete Laplace operator. We prove uniform convergence of the W -cycle algorithm in the energy norm and present numerical results for W -cy...

متن کامل

A Class of Block Smoothers for Multigrid Solution of Saddle Point Problems with Application to Fluid Flow

We design and analyse an iterative method, which uses a specific block smoother for the multigrid cycle. Among many possibilities we choose a few multigrid iterations as the smoother’s blocks. The result is a multilevel procedure that works for regular saddle point problems and features all good properties of the classical multigrid for elliptic problems, such as the optimal complexity and conv...

متن کامل

Multigrid Methods for Anisotropic Edge Refinement

A nite element method with optimal convergence on non-smooth three dimensional domains requires anisotropic mesh reenement towards the edges. Multigrid methods for anisotropic tensor product meshes are available and are based either on line (or plane) smoothers or on semi-coarsening strategies. In this paper we suggest and analyze a new multigrid scheme combining semi-coarsening and line smooth...

متن کامل

Efficient Smoothers for All-at-once Multigrid Methods for Poisson and Stokes Control Problems

In the present paper we concentrate on an important issue in constructing a good multigrid solver: the choice of an efficient smoother. We will introduce all-at-once multigrid solvers for optimal control problems which show robust convergence in the grid size and in the regularization parameter. We will refer to recent publications that guarantee such a convergence behavior. These publications ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computat. and Visualiz. in Science

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2011